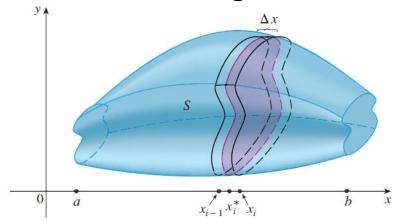
Closing today: HW_2A, 2B, 2C Closing next Wed: HW_3A, 3B, 3C (Pretend 3A, 3B, and 3C are closing Sunday!) Midterm 1 is Thursday, April 21, covers 4.9, 5.1-5.5, 6.1-6.3

Entry Task:

Find the area of the region bounded by $x = y^2$ and $y = x^3$ in 2 ways:

- (i) Using dx
- (ii) Using dy

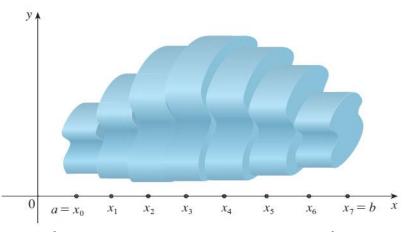
6.2 Finding Volumes Using Cross-Sectional Slicing



If we can find the general formula, $A(x_i)$, for the area of a cross-sectional slice, then we can approximate volume by:

Volume of one slice $\approx A(x_i) \Delta x$

Total Volume
$$\approx \sum_{i=1}^{n} A(x_i) \Delta x$$



This approximation gets better and better with more subdivisions, so we say

Exact Volume =
$$\lim_{n\to\infty} \sum_{i=1}^{n} A(x_i) \Delta x$$

And we conclude

Volume =
$$\int_{a}^{b} A(x)dx$$

$$= \int_{a}^{b} "Cross-sectional area formula" dx$$

Volume using cross-sectional slicing

- Draw! Cut perpendicular to the axis of rotation. If you draw a line at the cut, the axis you cut across is the variable you are using!
 Draw a typical cross-section, label Δx or Δy and label x or y, appropriately.
 Label everything in terms of the appropriate variable.
- 2. Area? Find the formula for the area of a cross-sectional slice.

Disc: Area = π (radius)²

Washer: Area = π (outer)² - π (inner)²

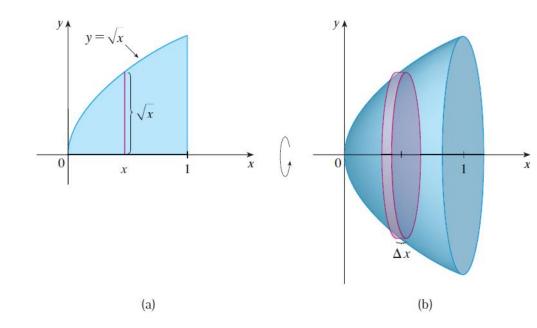
Square: Area = (Height)(Length)

Triangle: Area = ½ (Height)(Length)

3. Integrate the area formula.

Example: Consider the region, R, bounded by $y = \sqrt{x}$, y = 0, and x = 1. Find the volume of the solid obtained by rotating R about the x-axis.

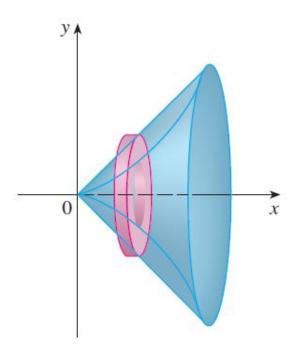
- 1. Draw and label!
- 2. Cross-sectional area?
- 3. Integrate area.



Example: Consider the region, R, bounded by $y = \sqrt{x}$, x = 0, and y = 1. Find the volume of the solid obtained by rotating R about the y-axis.

Example: Consider the region, R, bounded by y = x and $y = x^4$. Find the volume of the solid obtained by rotating R about the x-axis.

- 1. Draw and label!
- 2. Cross-sectional area?
- 3. Integrate area.



Example: Consider the region, R, bounded by y = x and $y = x^4$. (R is the same as the last example).

(a) Now rotate about the horizontal line y = -5. What changes?

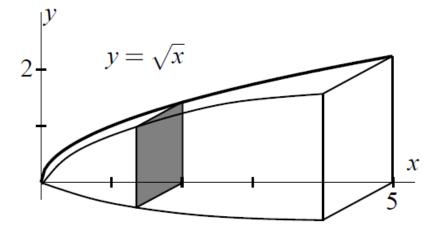
(b) Now rotate about the horizontal line y = 10. What changes?

Example:

Set up an integral for find the volume obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the vertical line x = -10.

Example:

(From an old final and homework)
Find the volume of the solid shown.
The cross-sections are squares.



- 1. Draw and label!
- 2. Cross-sectional area?
- 3. Integrate area.

Summary (Cross-sectional slicing):

- 1. Draw Label
- 2. Cross-sectional area?
- 3. Integrate area.

This method has one major limitation:

If the cross-sections are perpendicular to the x-axis (for example if you are rotating about the x-axis), then you must use dx.

If the cross-sections are perpendicular to the y-axis (for example if you are rotating about the y-axis), then you must use dy.

What if we were rotating about the x-axis and we wanted to use dy? This method won't work! We need another method. That is what we will do in 6.3.